Subscribe to our free fortnightly newsletter and stay ahead with the latest news in HE
Professor Ian Gent and Dr Peter Nightingale attempt the puzzle with the giant chess set at Falkland Palace

St. Andrews challenged to solve chess puzzle - for $1m

The prestigious Scottish university has challenged computer programmers to provide a solution to the famous chess problem, the 'Queen's Puzzle'

Posted by Charley Rogers | September 05, 2017 | Technology

Researchers at the University of St. Andrews have thrown down the gauntlet to computer programmers to find a solution to a 'simple' chess puzzle which could, in fact, take thousands of years to solve and net a $1m prize.

Computer Scientist Professor Ian Gent and his colleagues, at the University of St. Andrews, believe any program capable of solving the famous “Queens Puzzle” efficiently, would be so powerful, it would be capable of solving tasks currently considered impossible, such as decrypting the toughest security on the internet.

In a paper published in the Journal of Artificial Intelligence Research, the team conclude the rewards to be reaped by such a program would be immense, not least in financial terms with firms rushing to use it to offer technological solutions, and also a $1m prize offered by the Clay Mathematics Institute in America.

Devised in 1850, the Queens Puzzle originally challenged a player to place eight queens on a standard chessboard so that no two queens could attack each other. This means putting one queen in each row, so that no two queens are in the same column, and no two queens in the same diagonal. Although the problem has been solved by human beings, once the chess board increases to a large size no computer program can solve it.

Professor Gent and his colleagues, Senior Research Fellow Dr Peter Nightingale, and Reader Dr Christopher Jefferson, all of the School of Computer Science at the University, first became intrigued by the puzzle after a friend challenged Professor Gent to solve it on Facebook.

The team found that once the chess board reached 1000 squares by 1000, computer progams could no longer cope with the vast number of options and sunk into a potentially eternal struggle akin to the fictional “super computer” Deep Thought in Douglas Adams’ Hitchhiker’s Guide to the Galaxy, which took seven and a half million years to provide an answer to the meaning of everything.

If you could write a computer program that could solve the problem really fast, you could adapt it to solve many of the most important problems that affect us all daily. - Professor Ian Gent, University of St. Andrews

Professsor Gent said: “If you could write a computer program that could solve the problem really fast, you could adapt it to solve many of the most important problems that affect us all daily.

“This includes trivial challenges like working out the largest group of your Facebook friends who don’t know each other, or very important ones like cracking the codes that keep all our online transactions safe.”

The reason these problems are so difficult for computer programs, is that there are so many options to consider that it can take many years. This is due to a process of “backtracking” – an algorithm used in programming where every possible option is considered and then “backed away” from until the correct solution is found.

Dr Nightingale said: “However, this is all theoretical. In practice, nobody has ever come close to writing a program that can solve the problem quickly. So what our research has shown is that – for all practical purposes – it can’t be done.”

Dr Jefferson added: “There is a $1,000,000 prize for anyone who can prove whether or not the Queens Puzzle can be solved quickly so the rewards are high.”

Chess has long provided the source for puzzles such as the traditional fable of the servant who, when asked to choose a reward by his king, asked for one grain of rice to be placed on the first square of a standard 8x8 chessboard, doubled in the next and so on until it was found there was not enough rice in the entire world.

The fable indicates the huge numbers involved when using just a standard sized chess board. When the board size increases the numbers become vast.

Subscribe to our free fortnightly newsletter and stay ahead with the latest news in HE

Related stories

MOS World Championships medal for UK student

Tech over paper for student welcome apps

TB video game battles world's oldest disease

CLV partners with St. Andrews

The STEM commandments: Cel Robox

What is a virtual event and how are universities using them?

Coventry University plugs regional skills gap

Apprenticeships to address bioinformatics skills shortage

Boost for entrepreneurs with multi-million initiative

Most Brits say costs would stop them from attending uni

Market place - view all

Monitor IT

The cashless campus is becoming more of a reality. Universities and...

Exterity

Exterity is a market-leading provider of IP video and digital signage ...

BENQ

BenQ Corporation is a Taiwanese multi-national company that sells a...

Versa

Whether you're looking to solve dining space problems to get more s...

ASK 4

ASK4 is an industry leading provider of high-speed internet solutio...

Nationwide

Award winning online banking: whether it's current accounts, credit...